Abstract
Abstract
While space-borne optical and near-infrared facilities have succeeded in delivering a precise and spatially resolved picture of our Universe, their small survey area is known to underrepresent the true diversity of galaxy populations. Ground-based surveys have reached comparable depths but at lower spatial resolution, resulting in source confusion that hampers accurate photometry extractions. What once was limited to the infrared regime has now begun to challenge ground-based ultradeep surveys, affecting detection and photometry alike. Failing to address these challenges will mean forfeiting a representative view into the distant Universe. We introduce The Farmer: an automated, reproducible profile-fitting photometry package that pairs a library of smooth parametric models from The Tractor with a decision tree that determines the best-fit model in concert with neighboring sources. Photometry is measured by fitting the models on other bands leaving brightness free to vary. The resulting photometric measurements are naturally total, and no aperture corrections are required. Supporting diagnostics (e.g., χ
2) enable measurement validation. As fitting models is relatively time intensive, The Farmer is built with high-performance computing routines. We benchmark The Farmer on a set of realistic COSMOS-like images and find accurate photometry, number counts, and galaxy shapes. The Farmer is already being utilized to produce catalogs for several large-area deep extragalactic surveys where it has been shown to tackle some of the most challenging optical and near-infrared data available, with the promise of extending to other ultradeep surveys expected in the near future. The Farmer is available to download from GitHub (https://github.com/astroweaver/the_farmer) and Zenodo (https://doi.org/10.5281/zenodo.8205817).
Funder
EC ∣ European Research Council
EC ∣ Horizon 2020 Framework Programme
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献