DAVOS: Dwarf Active Galactic Nuclei from Variability for the Origins of Seeds: Properties of Variability-selected Active Galactic Nuclei in the COSMOS Field and Expectations for the Rubin Observatory

Author:

Burke Colin J.ORCID,Liu YichenORCID,Ward Charlotte A.ORCID,Liu XinORCID,Natarajan PriyamvadaORCID,Greene Jenny E.ORCID

Abstract

Abstract We study the black hole mass–host galaxy stellar mass relation, M BHM *, of a sample of z < 4 optically variable active galactic nuclei (AGNs) in the COSMOS field. The parent sample of 491 COSMOS AGNs were identified by optical variability from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) program. Using publicly available catalogs and spectra, we consolidate their spectroscopic redshifts and estimate virial black hole masses using broad-line widths and luminosities. We show that variability searches with deep, high-precision photometry like the HSC-SSP can identity AGNs in low-mass galaxies up to z ∼ 1. However, their black holes are more massive given their host galaxy stellar masses than predicted by the local relation for active galaxies. We report that z ∼ 0.5–4 variability-selected AGNs are meanwhile more consistent with the M BHM * relation for local inactive early-type galaxies. This result is in agreement with most previous studies of the M BHM * relation at similar redshifts and indicates that AGNs selected from variability are not intrinsically different from the broad-line Type 1 AGN population at similar luminosities. Our results demonstrate the need for robust black hole and stellar mass estimates for intermediate-mass black hole candidates in low-mass galaxies at similar redshifts to anchor this scaling relation. Assuming that these results do not reflect a selection bias, they appear to be consistent with self-regulated feedback models wherein the central black hole and stars in galaxies grow in tandem.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3