H-AMR: A New GPU-accelerated GRMHD Code for Exascale Computing with 3D Adaptive Mesh Refinement and Local Adaptive Time Stepping

Author:

Liska M. T. P.,Chatterjee K.,Issa D.,Yoon D.,Kaaz N.ORCID,Tchekhovskoy A.,van Eijnatten D.,Musoke G.,Hesp C.,Rohoza V.,Markoff S.ORCID,Ingram A.ORCID,van der Klis M.ORCID

Abstract

Abstract General relativistic magnetohydrodynamic (GRMHD) simulations have revolutionized our understanding of black hole accretion. Here, we present a GPU-accelerated GRMHD code H-AMR with multifaceted optimizations that, collectively, accelerate computation by 2–5 orders of magnitude for a wide range of applications. First, it introduces a spherical grid with 3D adaptive mesh refinement that operates in each of the three dimensions independently. This allows us to circumvent the Courant condition near the polar singularity, which otherwise cripples high-resolution computational performance. Second, we demonstrate that local adaptive time stepping on a logarithmic spherical-polar grid accelerates computation by a factor of ≲10 compared to traditional hierarchical time-stepping approaches. Jointly, these unique features lead to an effective speed of ∼109 zone cycles per second per node on 5400 NVIDIA V100 GPUs (i.e., 900 nodes of the OLCF Summit supercomputer). We illustrate H-AMR's computational performance by presenting the first GRMHD simulation of a tilted thin accretion disk threaded by a toroidal magnetic field around a rapidly spinning black hole. With an effective resolution of 13,440 × 4608 × 8092 cells and a total of ≲22 billion cells and ∼0.65 × 108 time steps, it is among the largest astrophysical simulations ever performed. We find that frame dragging by the black hole tears up the disk into two independently precessing subdisks. The innermost subdisk rotation axis intermittently aligns with the black hole spin, demonstrating for the first time that such long-sought alignment is possible in the absence of large-scale poloidal magnetic fields.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3