A GPU-Accelerated Modern Fortran Version of the ECHO Code for Relativistic Magnetohydrodynamics

Author:

Del Zanna Luca123ORCID,Landi Simone12ORCID,Serafini Lorenzo14,Bugli Matteo567ORCID,Papini Emanuele8ORCID

Affiliation:

1. Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy

2. INAF, Osservatorio Astrofisico di Arcetri, 50125 Firenze, Italy

3. INFN, Sezione di Firenze, 50019 Sesto Fiorentino, Italy

4. CINECA, 40033 Casalecchio di Reno, Italy

5. Dipartimento di Fisica, Università degli Studi di Torino, 10125 Torino, Italy

6. INFN, Sezione di Torino, 10125 Torino, Italy

7. Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France

8. INAF, Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italy

Abstract

The numerical study of relativistic magnetohydrodynamics (MHD) plays a crucial role in high-energy astrophysics but unfortunately is computationally demanding, given the complex physics involved (high Lorentz factor flows, extreme magnetization, and curved spacetimes near compact objects) and the large variety of spatial scales needed to resolve turbulent motions. A great benefit comes from the porting of existing codes running on standard processors to GPU-based platforms. However, this usually requires a drastic rewriting of the original code, the use of specific languages like CUDA, and a complex analysis of data management and optimization of parallel processes. Here, we describe the porting of the ECHO code for special and general relativistic MHD to accelerated devices, simply based on native Fortran language built-in constructs, especially do concurrent loops, few OpenACC directives, and straightforward data management provided by the Unified Memory option of NVIDIA compilers. Thanks to these very minor modifications to the original code, the new version of ECHO runs at least 16 times faster on GPU platforms as compared to CPU-based ones. The chosen benchmark is the 3D propagation of a relativistic MHD Alfvén wave, for which strong and weak scaling tests performed on the LEONARDO pre-exascale supercomputer at CINECA are provided (using up to 256 nodes corresponding to 1024 GPUs, and over 14 billion cells). Finally, an example of high-resolution relativistic MHD Alfvénic turbulence simulation is shown, demonstrating the potential for astrophysical plasmas of the new GPU-based version of ECHO.

Funder

European Union—NextGenerationEU

European Union’s Horizon Europe research and innovation program

Publisher

MDPI AG

Reference49 articles.

1. The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project;Porth;Astrophys. J. Suppl. Ser.,2019

2. EHT-Coll (2019). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875, L1.

3. EHT-Coll (2019). First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875, L5.

4. Instability, turbulence, and enhanced transport in accretion disks;Balbus;Rev. Mod. Phys.,1998

5. Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure;Hawley;Astrophys. J.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3