Low-dimensional Convolutional Neural Network for Solar Flares GOES Time-series Classification

Author:

Landa VladORCID,Reuveni YuvalORCID

Abstract

Abstract Space weather phenomena such as solar flares have a massive destructive power when they reach a certain magnitude. Here, we explore the deep-learning approach in order to build a solar flare-forecasting model, while examining its limitations and feature-extraction ability based on the available Geostationary Operational Environmental Satellite (GOES) X-ray time-series data. We present a multilayer 1D convolutional neural network to forecast the solar flare event probability occurrence of M- and X-class flares at 1, 3, 6, 12, 24, 48, 72, and 96 hr time frames. The forecasting models were trained and evaluated in two different scenarios: (1) random selection and (2) chronological selection, which were compared afterward in terms of common score metrics. Additionally, we also compared our results to state-of-the-art flare-forecasting models. The results indicates that (1) when X-ray time-series data are used alone, the suggested model achieves higher score results for X-class flares and similar scores for M-class as in previous studies. (2) The two different scenarios obtain opposite results for the X- and M-class flares. (3) The suggested model combined with solely X-ray time-series fails to distinguish between M- and X-class magnitude solar flare events. Furthermore, based on the suggested method, the achieved scores, obtained solely from X-ray time-series measurements, indicate that substantial information regarding the solar activity and physical processes are encapsulated in the data, and augmenting additional data sets, both spatial and temporal, may lead to better predictions, while gaining a comprehensive physical interpretation regarding solar activity. All source codes are available at https://github.com/vladlanda.

Funder

Ministry of Science, Technology and Space

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3