A Systematic Magnetic Polarity Inversion Line Data Set from SDO/HMI Magnetograms

Author:

Ji AnliORCID,Cai Xumin,Khasayeva Nigar,Georgoulis Manolis K.ORCID,Martens Petrus C.ORCID,Angryk Rafal A.ORCID,Aydin BerkayORCID

Abstract

Abstract Magnetic polarity inversion lines (PILs) detected in solar active regions have long been recognized as arguably the most essential feature for triggering instabilities such as flares and eruptive events (i.e., eruptive flares and coronal mass ejections). In recent years, efforts have been focused on using features engineered from PILs for solar eruption prediction. However, PIL rasters and metadata are often generated as by-products and are not accessible for public use, which limits their utilization in data-intensive space weather analytics applications. We introduce a large-scale publicly available PIL data set covering practically the entire solar cycle 24 for applying to various space weather forecasting and analytics tasks. The data set is created using both radial magnetic field (B_r) and line-of-sight (B_LoS) magnetograms from the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager Active Region Patches (HARP) that involve 4090 HARP series ranging from 2010 May to 2019 March. This data set includes three PIL-related binary masks of rasters: the actual PILs as per the spatial analysis of the magnetograms, the region of polarity inversion, and the convex hull of PILs, along with time-series-structured metadata extracted from these masks. We also provide a preliminary exploratory analysis of selected features aiming to correlate time series of feature metadata and eruptive activity originating from active regions. We envision that this comprehensive PIL data set will complement existing data sets used for space weather forecasting and benefit research in related areas, specifically in better understanding the PIL structure, evolution, and role in eruptions.

Funder

NSF ∣ CISE ∣ Office of Advanced Cyberinfrastructure

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic Evolution of an Active Region Producing Successive Flares and Confined Eruptions;Solar Physics;2024-04

2. Advancing Solar Flare Prediction Using Deep Learning with Active Region Patches;Lecture Notes in Computer Science;2024

3. Exploring Deep Learning for Full-disk Solar Flare Prediction with Empirical Insights from Guided Grad-CAM Explanations;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

4. Towards Interpretable Solar Flare Prediction with Attention-based Deep Neural Networks;2023 IEEE Sixth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE);2023-09-25

5. Explaining Full-Disk Deep Learning Model for Solar Flare Prediction Using Attribution Methods;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3