Explaining Full-Disk Deep Learning Model for Solar Flare Prediction Using Attribution Methods
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-43430-3_5
Reference43 articles.
1. Ahmadzadeh, A., Aydin, B., Georgoulis, M., Kempton, D., Mahajan, S., Angryk, R.: How to train your flare prediction model: revisiting robust sampling of rare events. Astrophys. J. Suppl. Ser. 254(2), 23 (2021)
2. Ahmadzadeh, A., et al.: Challenges with extreme class-imbalance and temporal coherence: a study on solar flare data. In: 2019 IEEE International Conference on Big Data. IEEE (2019)
3. Bhattacharjee, S., Alshehhi, R., Dhuri, D.B., Hanasoge, S.M.: Supervised convolutional neural networks for classification of flaring and nonflaring active regions using line-of-sight magnetograms. Astrophys. J. 898(2), 98 (2020)
4. Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135 (2015)
5. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM$$++$$: generalized gradient-based visual explanations for deep convolutional networks. In: Winter Conference on Applications of Computer Vision. IEEE (2018)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Disk Failure Based on Classification Intensity Resampling;Information;2024-05-31
2. Advancing Solar Flare Prediction Using Deep Learning with Active Region Patches;Lecture Notes in Computer Science;2024
3. Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF;Lecture Notes in Computer Science;2024
4. Interpretable Solar Flare Prediction with Sliding Window Multivariate Time Series Forests;2023 IEEE International Conference on Big Data (BigData);2023-12-15
5. Unveiling the Potential of Deep Learning Models for Solar Flare Prediction in Near-Limb Regions;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3