Prediction of Disk Failure Based on Classification Intensity Resampling

Author:

Wu Sheng12ORCID,Guan Jihong1

Affiliation:

1. College of Electronic Information and Engineering, Tongji University, Shanghai 201804, China

2. ICBC Data Center, Shanghai 200131, China

Abstract

With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data technologies has become a research hotspot, aiming to guide operation and maintenance personnel to implement preventive replacement through accurate prediction to reduce hardware failure rates. However, existing methods still have weaknesses in terms of accuracy due to the impacts of data quality issues such as the sample imbalance. This article proposes a disk fault prediction method based on classification intensity resampling, which fills the gap between the degree of data imbalance and the actual classification intensity of the task by introducing a base classifier to calculate the classification intensity, thus better preserving the data features of the original dataset. In addition, using ensemble learning methods such as random forests, combined with resampling, an integrated classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental verification shows that compared with traditional methods, the F1-score of disk fault prediction is improved by 6%, and the model training time is also greatly reduced. The fault prediction method proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the production environment of a large bank’s data center to guide preventive replacements. Compared to traditional methods, the number of preventive replacements based on our method has decreased by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating the effectiveness of our method.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3