Abstract
Abstract
We present the implementation of general-relativistic resistive magnetohydrodynamics solvers and three divergence-free handling approaches adopted in the General-relativistic multigrid numerical (Gmunu) code. In particular, implicit–explicit Runge–Kutta schemes are used to deal with the stiff terms in the evolution equations for small resistivity. The three divergence-free handling methods are (i) hyperbolic divergence cleaning (also known as the generalized Lagrange multiplier), (ii) staggered-meshed constrained transport schemes, and (iii) elliptic cleaning through a multigrid solver, which is applicable in both cell-centered and face-centered (stagger grid) magnetic fields. The implementation has been tested with a number of numerical benchmarks from special-relativistic to general-relativistic cases. We demonstrate that our code can robustly recover from the ideal magnetohydrodynamics limit to a highly resistive limit. We also illustrate the applications in modeling magnetized neutron stars, and compare how different divergence-free handling methods affect the evolution of the stars. Furthermore, we show that the preservation of the divergence-free condition of the magnetic field when using staggered-meshed constrained transport schemes can be significantly improved by applying elliptic cleaning.
Funder
Research Grants Council, University Grants Committee
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献