General-relativistic Radiation Transport Scheme in Gmunu. II. Implementation of Novel Microphysical Library for Neutrino Radiation—Weakhub

Author:

Ng Harry Ho-YinORCID,Cheong 張 Patrick Chi-Kit 志杰ORCID,Lam Alan Tsz-LokORCID,Li Tjonnie Guang FengORCID

Abstract

Abstract We introduce Weakhub, a novel neutrino microphysics library that provides opacities and kernels beyond conventional interactions used in the literature. This library includes neutrino–matter, neutrino–neutrino interactions and plasma process, along with corresponding weak and strong corrections. A full kinematics approach is adopted for the calculations of β-processes, incorporating various weak corrections and medium modifications due to the nuclear equation of state. Calculations of plasma processes, electron neutrino–antineutrino annihilation, and nuclear de-excitation are also included. We also present the detailed derivations of weak interactions and the coupling to the two-moment based general-relativistic multigroup radiation transport in the general-relativistic multigrid numerical (Gmunu) code. We compare the neutrino opacity spectra for all interactions and estimate their contributions at hydrodynamical points in core-collapse supernovae and binary neutron star (BNS) postmerger remnants, and predict the effects of improved opacities in comparison to conventional ones for a BNS postmerger at a specific hydrodynamical point. We test the implementation of the conventional set of interactions by comparing it to an open-source neutrino library NuLib in a core-collapse supernova simulation. We demonstrate good agreement with discrepancies of less than ∼10% in luminosity for all neutrino species, while also highlighting the reasons contributing to the differences. To compare the advanced interactions to the conventional set in core-collapse supernova modeling, we perform simulations to analyze their impacts on neutrino signatures, hydrodynamical behaviors, and shock dynamics, showing significant deviations.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3