SWASTi-CME: A Physics-based Model to Study Coronal Mass Ejection Evolution and Its Interaction with Solar Wind

Author:

Mayank PrateekORCID,Vaidya BhargavORCID,Mishra WageeshORCID,Chakrabarty D.ORCID

Abstract

Abstract Coronal mass ejections (CMEs) are primary drivers of space weather, and studying their evolution in the inner heliosphere is vital to prepare for a timely response. Solar wind streams, acting as background, influence their propagation in the heliosphere and associated geomagnetic storm activity. This study introduces SWASTi-CME, a newly developed MHD-based CME model integrated into the Space Weather Adaptive SimulaTion (SWASTi) framework. It incorporates a nonmagnetized elliptic cone and a magnetized flux rope CME model. To validate the model’s performance with in situ observation at L1, two Carrington rotations were chosen: one during solar maxima with multiple CMEs, and one during solar minima with a single CME. The study also presents a quantitative analysis of CME–solar wind interaction using this model. To account for ambient solar wind effects, two scenarios of different complexity in solar wind conditions were established. The results indicate that ambient conditions can significantly impact some of the CME properties in the inner heliosphere. We found that the drag force on the CME front exhibits a variable nature, resulting in asymmetric deformation of the CME leading edge. Additionally, the study reveals that the impact on the distribution of CME internal pressure primarily occurs during the initial stage, while the CME density distribution is affected throughout its propagation. Moreover, regardless of the ambient conditions, it was observed that, after a certain propagation time (t), the CME volume follows a nonfractal power-law expansion (∝t 3.03−3.33) due to the attainment of a balanced state with ambient.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3