Using sunRunner3D to interpret the global structure of the heliosphere from in situ measurements

Author:

González-Avilés José JuanORCID,Riley PeteORCID,Ben-Nun MichalORCID,Mayank PrateekORCID,Vaidya BhargavORCID

Abstract

Understanding the large-scale three-dimensional structure of the inner heliosphere, while important in its own right, is crucial for space weather applications, such as forecasting the time of arrival and propagation of coronal mass ejections (CMEs). This study uses sunRunner3D (3D), a 3-D magnetohydrodynamic (MHD) model, to simulate solar wind (SW) streams and generate background states. SR3D employs the boundary conditions generated by corona-heliosphere (CORHEL) and the PLUTO code to compute the plasma properties of the SW with the MHD approximation up to 1.1 AU in the inner heliosphere. We demonstrate that SR3D reproduces global features of corotating interaction regions (CIRs) observed by Earth-based spacecraft (OMNI) and the Solar Terrestial Relations Observatory (STEREO)-A for a set of Carrington rotations (CRs) that cover a period that lays in the late declining phase of solar cycle 24. Additionally, we demonstrate that the model solutions are valid in the corotating and inertial frames of references. Moreover, a comparison between SR3D simulations and in situ measurements shows reasonable agreement with the observations, and our results are comparable to those achieved by Predictive Science Inc.’s Magnetohydrodynamic Algorithm outside a Sphere (MAS) code. We have also undertaken a comparative analysis with the Space Weather Adaptive Simulation Framework for Solar Wind (SWASTi-SW), a PLUTO physics-based model, to evaluate the precision of various initial boundary conditions. Finally, we discuss the disparities in the solutions derived from inertial and rotating frames.

Funder

CONAHCYT

PAPIIT

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3