Abstract
Abstract
We present a performance test of the point-spread function (PSF) deconvolution algorithm applied to astronomical integral field unit (IFU) spectroscopy data for restoration of galaxy kinematics. We deconvolve the IFU data by applying the Lucy–Richardson algorithm to the 2D image slice at each wavelength. We demonstrate that the algorithm can effectively recover the true stellar kinematics of the galaxy, by using mock IFU data with a diverse combination of surface brightness profile, signal-to-noise ratio, line-of-sight geometry, and line-of-sight velocity distribution (LOSVD). In addition, we show that the proxy of the spin parameter
λ
R
e
can be accurately measured from the deconvolved IFU data. We apply the deconvolution algorithm to the actual SDSS-IV MaNGA IFU survey data. The 2D LOSVD, geometry, and
λ
R
e
measured from the deconvolved MaNGA IFU data exhibit noticeable differences compared to the ones measured from the original IFU data. The method can be applied to any other regular-grid IFU data to extract the PSF-deconvolved spatial information.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献