Abstract
Abstract
We test the idea that bar pattern speeds decrease with time owing to angular momentum exchange with a dark matter halo. If this process actually occurs, then the radii of the corotation resonance and other resonances should generally increase with time. We therefore derive the angular velocity Ω and epicyclic frequency κ as functions of galactocentric radius for 85 barred galaxies using photometric data. Mass maps are constructed by assuming a dynamical mass-to-light ratio and then solving the Poisson equation for the gravitational potential. The locations of Lindblad resonances and the corotation resonance radius are then derived using the standard precession frequency curves in conjunction with bar pattern speeds recently estimated from the Tremaine–Weinberg method as applied to integral field spectroscopy data. Correlations between physical properties of bars and their host galaxies indicate that bar length and the corotation radius depend on the disk circular velocity while bar strength and pattern speed do not. As the bar pattern speed decreases, bar strength, length, and corotation radius increase, but when bars are subclassified into fast, medium, and slow domains, no significant change in bar length is found. Only a hint of an increase in bar strength from fast to slow bars is found. These results suggest that bar length in a galaxy undergoes little evolution, and is determined instead mainly by the size of the host galaxy.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献