New Compound and Hybrid Binding Energy Sputter Model for Modeling Purposes in Agreement with Experimental Data

Author:

Jäggi NoahORCID,Mutzke Andreas,Biber HerbertORCID,Brötzner JohannesORCID,Szabo Paul StefanORCID,Aumayr FriedrichORCID,Wurz PeterORCID,Galli AndréORCID

Abstract

Abstract Rocky planets and moons experiencing solar wind sputtering are continuously supplying their enveloping exosphere with ejected neutral atoms. To understand the quantity and properties of the ejecta, well-established binary collision approximation Monte Carlo codes like TRIM with default settings are used predominantly. Improved models such as SDTrimSP have come forward, and together with new experimental data, the underlying assumptions have been challenged. We introduce a hybrid model, combining the previous surface binding approach with a new bulk binding model akin to Hofsäss & Stegmaier. In addition, we expand the model implementation by distinguishing between free and bound components sourced from mineral compounds such as oxides or sulfides. The use of oxides and sulfides also enables the correct setting of the mass densities of minerals, which was previously limited to the manual setting of individual atomic densities of elements. All of the energies and densities used are thereby based on tabulated data, so that only minimal user input and no fitting of parameters are required. We found unprecedented agreement between the newly implemented hybrid model and previously published sputter yields for incidence angles up to 45° from surface normal. Good agreement is found for the angular distribution of mass sputtered from enstatite MgSiO3 compared to the latest experimental data. Energy distributions recreate trends of experimental data of oxidized metals. Similar trends are to be expected from future mineral experimental data. The model thus serves its purpose of widespread applicability and ease of use for modelers of rocky body exospheres.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Austrian Science Fund

NASA ∣ Solar System Exploration Research Virtual Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-energy particle observations from the Moon;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-03-25

2. SpuBase: Solar Wind Ion Sputter Database for Modeling Purposes;The Planetary Science Journal;2024-03-01

3. Backscattering of Ions Impacting Ganymede’s Surface as a Source for Energetic Neutral Atoms;The Astrophysical Journal Letters;2024-02-29

4. Energetic Neutral Atom (ENA) Emission Characteristics at the Moon and Mercury From 3D Regolith Simulations of Solar Wind Reflection;Journal of Geophysical Research: Planets;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3