Abstract
Abstract
Accurate disk mass measurements are necessary to constrain disk evolution and the timescale of planet formation, but such measurements are difficult to make and are very dependent on assumptions. Here, we look at the assumption that the disk is optically thin at radio wavelengths and the effect of this assumption on measurements of disk dust mass. We model the optical to radio spectral energy distributions of 41 protoplanetary disks located in the young (∼1–3 Myr old) Lupus star-forming region, including 0.89 1.33 and 3 mm flux densities when available. We measure disk dust masses that are ∼1.5–6 times higher than when using the commonly adopted disk dust mass equation under the assumption of optically thin emission in the (sub)millimeter range. The cause of this discrepancy is that most disks are optically thick at millimeter wavelengths, even up to 3 mm, demonstrating that observations at longer wavelengths are needed to trace the fully optically thin emission of disks.
Funder
NASA ∣ SMD ∣ Astrophysics Division
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献