Mid-infrared Spectrum of the Disk around the Forming Companion GQ Lup B Revealed by JWST/MIRI

Author:

Cugno GabrieleORCID,Patapis PolychronisORCID,Banzatti AndreaORCID,Meyer MichaelORCID,Dannert Felix A.ORCID,Stolker TomasORCID,MacDonald Ryan J.ORCID,Pontoppidan Klaus M.ORCID

Abstract

Abstract GQ Lup B is a forming brown dwarf companion (M ∼ 10–30 M J) showing evidence for an infrared excess associated with a disk surrounding the companion itself. Here we present mid-infrared (MIR) observations of GQ Lup B with the Medium Resolution Spectrometer (MRS) on JWST, spanning 4.8–11.7 μm. We remove the stellar contamination using reference differential imaging based on principal component analysis, demonstrating that the MRS can perform high-contrast science. Our observations provide a sensitive probe of the disk surrounding GQ Lup B. We find no sign of a silicate feature, similar to other disks surrounding very low-mass objects, which likely implies significant grain growth ( a min 5 μm) and potentially dust settling. Additionally, we find that if the emission is dominated by an inner wall, the disk around the companion might have an inner cavity larger than the one set by sublimation. Conversely, if our data probe the emission from a thin flat disk, we find the disk to be very compact. More observations are required to confirm this findings and assess the vertical structure of the disk. This approach paves the path to the future study of circumplanetary disks and their physical properties. Our results demonstrate that MIR spectroscopic observations can reveal the physical characteristics of disks around forming companions, providing unique insights into the formation of giant planets, brown dwarfs, and their satellites.

Funder

Swiss National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3