Abstract
Abstract
A quantitative data-driven comparison among supernovae (SNe) based on their spectral time series combined with multiband photometry is presented. We use an unsupervised random forest algorithm as a metric on a set of 82 well-documented SNe representing all the main spectroscopic types, in order to embed these in an abstract metric space reflecting shared correlations between the objects. We visualize the resulting metric space in 3D, revealing strong agreement with the current spectroscopic classification scheme. The embedding splits Type Ib supernovae into two groups, with one subgroup exhibiting broader, less prominent, higher-velocity lines than the other, possibly suggesting a new SN Ib subclass is required. The method could be to classify newly discovered SNe according to their distance from known event groups, or ultimately to devise a new, spectral–temporal classification scheme. Such an embedding could also depend on hidden parameters that may perhaps be physically interpretable.
Funder
EC ∣ European Research Council
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献