Building spectral templates and reconstructing parameters for core-collapse supernovae with CASTOR

Author:

Simongini Andrea123ORCID,Ragosta F45ORCID,Piranomonte S1ORCID,Di Palma I136ORCID

Affiliation:

1. INAF, Osservatorio Astronomico di Roma , Via di Frascati 33, I-00078 Monteporzio Catone , Italy

2. Università Tor Vergata, Dipartimento di Fisica , Via della Ricerca Scientifica 1, I-00133 Rome , Italy

3. Universitá La Sapienza, Dipartimento di Fisica , Piazzale Aldo Moro 2, I-00185 Rome , Italy

4. Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II , Via Cinthia 9, I-80126 Naples , Italy

5. INAF, Osservatorio Astronomico di Capodimonte , Via Moiariello 16, I-80131 Naples , Italy

6. INFN, Sezione di Roma , Piazzale Aldo Moro 2, I-00185 Rome , Italy

Abstract

ABSTRACT The future of time-domain optical astronomy relies on the development of techniques and software capable of handling a rising amount of data and gradually complementing, or replacing if necessary, real observations. Next-generation surveys, like the Large Synoptic Survey Telescope, will open the door to the new era of optical astrophysics, creating, at the same time, a deficiency in spectroscopic data necessary to confirm the nature of each event and to fully recover the parametric space. In this framework, we developed Core collApse Supernovae parameTers estimatOR (CASTOR), a novel software for data analysis. CASTOR combines Gaussian process and other machine-learning techniques to build time-series templates of synthetic spectra and to estimate parameters of core-collapse supernovae (CCSNe) for which only multiband photometry is available. Techniques to build templates are fully data driven and non-parametric through empirical and robust models, and rely on the direct comparison with a training set of 111 CCSNe from the literature. Furthermore, CASTOR employees the real photometric data and the reconstructed synthetic spectra of an event to estimate parameters that belong to the supernova ejecta, to the stellar progenitor and to the event itself, in a rapid and user-friendly framework. In this work, we provide a demonstration of how CASTOR works, studying available data from SN 2015ap and comparing our results with those available in literature.

Funder

Sapienza

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3