Abstract
Abstract
Coronal flare emission is commonly observed to decay on timescales longer than those predicted by impulsively driven, one-dimensional flare loop models. This discrepancy is most apparent during the gradual phase, where emission from these models decays over minutes, in contrast to the hour or more often observed. Magnetic reconnection is invoked as the energy source of a flare, but should deposit energy into a given loop within a matter of seconds. Models which supplement this impulsive energization with a long, persistent ad hoc heating have successfully reproduced long-duration emission, but without providing a clear physical justification. Here we propose a model for extended flare heating by the slow dissipation of turbulent Alfvén waves initiated during the retraction of newly reconnected flux tubes through a current sheet. Using one-dimensional simulations, we track the production and evolution of MHD wave turbulence trapped by reflection from high-density gradients in the transition region. Turbulent energy dissipates through nonlinear interaction between counter-propagating waves, modeled here using a phenomenological one-point closure model. Atmospheric Imaging Assembly EUV light curves synthesized from the simulation were able to reproduce emission decay on the order of tens of minutes. We find this simple model offers a possible mechanism for generating the extended heating demanded by observed coronal flare emissions self-consistently from reconnection-powered flare energy release.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献