Stellar Escape from Globular Clusters. I. Escape Mechanisms and Properties at Ejection

Author:

Weatherford Newlin C.ORCID,Kıroğlu FulyaORCID,Fragione GiacomoORCID,Chatterjee SouravORCID,Kremer KyleORCID,Rasio Frederic A.ORCID

Abstract

Abstract The theory of stellar escape from globular clusters (GCs) dates back nearly a century, especially the gradual evaporation of GCs via two-body relaxation coupled with external tides. More violent ejection can also occur via strong gravitational scattering, supernovae, gravitational wave-driven mergers, tidal disruption events, and physical collisions, but comprehensive study of the many escape mechanisms has been limited. Recent exquisite kinematic data from the Gaia space telescope has revealed numerous stellar streams in the Milky Way (MW) and traced the origin of many to specific MWGCs, highlighting the need for further examination of stellar escape from these clusters. In this study, the first of a series, we lay the groundwork for detailed follow-up comparisons between Cluster Monte Carlo GC models and the latest Gaia data on the outskirts of MWGCs, their tidal tails, and associated streams. We thoroughly review escape mechanisms from GCs and examine their relative contributions to the escape rate, ejection velocities, and escaper demographics. We show for the first time that three-body binary formation may dominate high-speed ejection from typical MWGCs, potentially explaining some of the hypervelocity stars in the MW. Due to their mass, black holes strongly catalyze this process, and their loss at the onset of observable core collapse, characterized by a steep central brightness profile, dramatically curtails three-body binary formation, despite the increased post-collapse density. We also demonstrate that even when born from a thermal eccentricity distribution, escaping binaries have significantly nonthermal eccentricities consistent with the roughly uniform distribution observed in the Galactic field.

Funder

National Science Foundation

National Aeronautics and Space Administration

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3