Abstract
Abstract
Binding energies (BEs) are one of the most important parameters for astrochemical modeling determining, because they govern whether a species stays in the gas phase or is frozen on the grain surfaces. It is currently known that, in the denser and colder regions of the interstellar medium, sulfur is severely depleted in the gas phase. It has been suggested that it may be locked into the grain icy mantles. However, which are the main sulfur carriers is still a matter of debate. This work aims to establish accurate BEs of 17 sulfur-containing species on two validated water ice structural models, the proton-ordered crystalline (010) surface and an amorphous water ice surface. We adopted density functional theory-based methods (the hybrid B3LYP-D3(BJ) and the hybrid meta-GGA M06-2X functionals) to predict structures and energetics of the adsorption complexes. London’s dispersion interactions are shown to be crucial for an accurate estimate of the BEs due to the presence of the high polarizable sulfur element. On the crystalline model, the adsorption is restricted to a very limited number of binding sites with single valued BEs, while on the amorphous model, several adsorption structures are predicted, giving a BE distribution for each species. With the exception of a few cases, both experimental and other computational data are in agreement with our calculated BE values. A final discussion on how useful the computed BEs are with respect to the snow lines of the same species in protoplanetary disks is provided.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献