Binding Energies of Interstellar Relevant S-bearing Species on Water Ice Mantles: A Quantum Mechanical Investigation

Author:

Perrero JessicaORCID,Enrique-Romero JoanORCID,Ferrero StefanoORCID,Ceccarelli CeciliaORCID,Podio LindaORCID,Codella ClaudioORCID,Rimola AlbertORCID,Ugliengo PieroORCID

Abstract

Abstract Binding energies (BEs) are one of the most important parameters for astrochemical modeling determining, because they govern whether a species stays in the gas phase or is frozen on the grain surfaces. It is currently known that, in the denser and colder regions of the interstellar medium, sulfur is severely depleted in the gas phase. It has been suggested that it may be locked into the grain icy mantles. However, which are the main sulfur carriers is still a matter of debate. This work aims to establish accurate BEs of 17 sulfur-containing species on two validated water ice structural models, the proton-ordered crystalline (010) surface and an amorphous water ice surface. We adopted density functional theory-based methods (the hybrid B3LYP-D3(BJ) and the hybrid meta-GGA M06-2X functionals) to predict structures and energetics of the adsorption complexes. London’s dispersion interactions are shown to be crucial for an accurate estimate of the BEs due to the presence of the high polarizable sulfur element. On the crystalline model, the adsorption is restricted to a very limited number of binding sites with single valued BEs, while on the amorphous model, several adsorption structures are predicted, giving a BE distribution for each species. With the exception of a few cases, both experimental and other computational data are in agreement with our calculated BE values. A final discussion on how useful the computed BEs are with respect to the snow lines of the same species in protoplanetary disks is provided.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3