Theoretical versus Observational Uncertainties: Composition of Giant Exoplanets

Author:

Müller SimonORCID,Ben-Yami MayaORCID,Helled RavitORCID

Abstract

Abstract In order to characterize giant exoplanets and better understand their origin, knowledge of how the planet’s composition depends on its mass and stellar environment is required. In this work, we simulate the thermal evolution of gaseous planets and explore how various common model assumptions such as different equations of state, opacities, and heavy-element distributions affect the inferred radius and metallicity. We examine how the theoretical uncertainties translate into uncertainties in the inferred planetary radius and bulk metallicity. While we confirm the mass–metallicity trend previously reported in the literature, this correlation disappears when removing a 20 M heavy-element core from all the planets. We also show that using an updated hydrogen–helium equation of state leads to more compact planets. As a result, we present six planets that should be classified as inflated warm Jupiters. We next demonstrate that including the opacity enhancement due to metal-rich envelopes of irradiated planets changes the planetary radius significantly, which can have large effects on the inferred metallicity. Even though there are other model assumptions that have not been considered in this work, we could show that the calculated theoretical uncertainties can already be comparable or even larger than the observational ones. Therefore, theoretical uncertainties are likely to be even larger. We therefore conclude that progress in theoretical models of giant planets is essential in order to take full advantage of current and future exoplanetary data.

Funder

Swiss National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feed forward neural network parametrization of the mean radiative properties of the mixture;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-12

2. Warm giant exoplanet characterisation: current state, challenges and outlook;Frontiers in Astronomy and Space Sciences;2023-05-10

3. From science questions to Solar System exploration;Planetary Exploration Horizon 2061;2023

4. Solar System/Exoplanet Science Synergies in a multidecadal perspective;Planetary Exploration Horizon 2061;2023

5. Towards a new era in giant exoplanet characterisation;Astronomy & Astrophysics;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3