Thermal Evolution and Magnetic History of Rocky Planets

Author:

Zhang JishengORCID,Rogers Leslie A.ORCID

Abstract

Abstract We present a thermal evolution model coupled with a Henyey solver to study the circumstances under which a rocky planet could potentially host a dynamo in its liquid iron core and/or magma ocean. We calculate the evolution of planet thermal profiles by solving the energy-balance equations for both the mantle and the core. We use a modified mixing length theory to model the convective heat flow in both the magma ocean and solid mantle. In addition, by including the Henyey solver, we self-consistently account for adjustments in the interior structure and heating (cooling) due to planet contraction (expansion). We evaluate whether a dynamo can operate using the critical magnetic Reynolds number. We run simulations to explore how the planet mass (M pl), core mass fraction (CMF), and equilibrium temperature (T eq) affect the evolution and lifetime of possible dynamo sources. We find that the T eq determines the solidification regime of the magma ocean, and only layers with melt fraction greater than a critical value of 0.4 may contribute to the dynamo source region in the magma ocean. We find that the mantle mass, determined by M pl and CMF, controls the thermal isolating effect on the iron core. In addition, we show that the liquid core lasts longer with increasing planet mass. For a core thermal conductivity of 40 Wm−1 K−1, the lifetime of the dynamo in the iron core is limited by the lifetime of the liquid core for 1 M planets and by the lack of thermal convection for 3 M planets.

Funder

National Aeronautics and Space Administration

Research Corporation for Scientific Advancement

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3