Abstract
Abstract
The parametric decay of finite-size Alfvén waves in nonperiodic low-beta plasmas is investigated using one-dimensional (1D) hybrid simulations. Compared with the usual small periodic system, a wave packet in a large system under the absorption boundary condition shows different decay dynamics, including reduced energy transfer, localized density cavitation, and ion heating. The resulting Alfvén wave dynamics are influenced by several factors relating to this instability, including the growth rate, central wave frequency, and unstable bandwidth. A final steady state of the wave packet may be achieved when the instability does not have enough time to develop within the residual packet, and the packet size shows well-defined scaling dependencies on the growth rate, wave amplitude, and plasma beta. Under the proper conditions, enhanced secondary decay can also be excited in the form of a narrow, amplified wave packet. These results may help to interpret laboratory and spacecraft observations of Alfvén waves, and to refine our understanding of the associated energy transport and ion heating.
Funder
NSF/DOE Partnership in Basic Plasma Science and Engineering
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献