Abstract
Fluctuations in fast streams or in slow Alfvénic streams of the solar wind, and in the high-latitude wind, are characterized by high cross-helicity and a low level of compressions. Such properties, which are typical of Alfvénic fluctuations, tend to decline with increasing heliocentric distance. Parametric decay, where the energy of an initial Alfvén wave is progressively transferred to both backward-propagating Alfvén and compressive modes, has been proposed as a mechanism responsible for such a behavior. Over the years, the parametric process has been studied, both analytically and numerically, in many configurations, from monochromatic waves to increasingly complex situations which include broad-band turbulent configurations with one- and two-dimensional spectra. In this paper, we give a brief review of this theoretical development, discussing its relevance in the context the evolution of Alfvénic turbulence in the solar wind.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献