As Simple as Possible but No Simpler: Optimizing the Performance of Neural Net Emulators for Galaxy SED Fitting

Author:

Mathews Elijah P.ORCID,Leja JoelORCID,Speagle 沈 Joshua S. 佳士ORCID,Johnson Benjamin D.ORCID,Gibson JustusORCID,Nelson Erica J.ORCID,Suess Katherine A.ORCID,Tacchella SandroORCID,Whitaker Katherine E.ORCID,Wang 王 Bingjie 冰洁ORCID

Abstract

Abstract Artificial neural network emulators have been demonstrated to be a very computationally efficient method to rapidly generate galaxy spectral energy distributions, for parameter inference or otherwise. Using a highly flexible and fast mathematical structure, they can learn the nontrivial relationship between input galaxy parameters and output observables. However, they do so imperfectly, and small errors in flux prediction can yield large differences in recovered parameters. In this work, we investigate the relationship between an emulator’s execution time, uncertainties, correlated errors, and ability to recover accurate posteriors. We show that emulators can recover consistent results to traditional fits, with a precision of 25%–40% in posterior medians for stellar mass, stellar metallicity, star formation rate, and stellar age. We find that emulation uncertainties scale with an emulator’s width N as ∝N −1, while execution time scales as ∝N 2, resulting in an inherent tradeoff between execution time and emulation uncertainties. We also find that emulators with uncertainties smaller than observational uncertainties are able to recover accurate posteriors for most parameters without a significant increase in catastrophic outliers. Furthermore, we demonstrate that small architectures can produce flux residuals that have significant correlations, which can create dangerous systematic errors in colors. Finally, we show that the distributions chosen for generating training sets can have a large effect on an emulator’s ability to accurately fit rare objects. Selecting the optimal architecture and training set for an emulator will minimize the computational requirements for fitting near-future large-scale galaxy surveys. We release our emulators on GitHub (http://github.com/elijahmathews/MathewsEtAl2023).

Funder

Space Telescope Science Institute

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3