Quantifying the Effects of Known Unknowns on Inferred High-redshift Galaxy Properties: Burstiness, IMF, and Nebular Physics

Author:

Wang 王 Bingjie 冰洁ORCID,Leja JoelORCID,Atek HakimORCID,Labbé IvoORCID,Li 李 Yijia 轶佳ORCID,Bezanson RachelORCID,Brammer GabrielORCID,Cutler Sam E.ORCID,Dayal PratikaORCID,Furtak Lukas J.ORCID,Greene Jenny E.ORCID,Kokorev VasilyORCID,Pan RichardORCID,Price Sedona H.ORCID,Suess Katherine A.ORCID,Weaver John R.ORCID,Whitaker Katherine E.ORCID,Williams Christina C.ORCID

Abstract

Abstract The era of the James Webb Space Telescope ushers stellar population models into uncharted territories, particularly at the high-redshift frontier. In a companion paper, we apply the Prospector Bayesian framework to jointly infer galaxy redshifts and stellar population properties from broadband photometry as part of the UNCOVER survey. Here we present a comprehensive error budget in spectral energy distribution (SED) modeling. Using a sample selected to have photometric redshifts higher than 9, we quantify the systematic shifts stemming from various model choices in inferred stellar mass, star formation rate (SFR), and age. These choices encompass different timescales for changes in the star formation history (SFH), nonuniversal stellar initial mass functions (IMF), and the inclusion of variable nebular abundances, gas density, and ionizing photon budget. We find that the IMF exerts the strongest influence on the inferred properties: the systematic uncertainties can be as much as 1 dex, 2–5 times larger than the formal reported uncertainties in mass and SFR, and importantly, exceed the scatter seen when using different SED fitting codes. Although the assumptions on the lower end of the IMF induce degeneracy, our findings suggest that a common practice in the literature of assessing uncertainties in SED-fitting processes by comparing multiple codes is substantively underestimating the true systematic uncertainty. Highly stochastic SFHs change the inferred SFH by much larger than the formal uncertainties, and introduce ∼0.8 dex systematics in SFR averaged over a short timescale and ∼0.3 dex systematics in average age. Finally, employing a flexible nebular emission model causes ∼0.2 dex systematic increase in mass and SFR, comparable to the formal uncertainty. This paper constitutes an initial step toward a complete uncertainty estimate in SED modeling.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3