Abstract
Abstract
We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on a convolutional neural network (CNN). Training data sets are generated with ray-tracing through cosmological simulations. We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing ground-based WL observations of galaxy clusters. We find that the mass reconstruction by our multilayered CNN with the architecture of alternating convolution and trans-convolution filters significantly outperforms the traditional reconstruction methods. The CNN method provides better pixel-to-pixel correlations with the truth, restores more accurate positions of the mass peaks, and more efficiently suppresses artifacts near the field edges. In addition, the CNN mass reconstruction lifts the mass-sheet degeneracy when applied to our projected cluster mass estimation from sufficiently large fields. This implies that this CNN algorithm can be used to measure the cluster masses in a model-independent way for future wide-field WL surveys.
Funder
National Research Foundation of Korea
Ministry of Science and ICT, South Korea
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献