Modeling Polarization Signals from Cloudy Brown Dwarfs Luhman 16 A and B in Three Dimensions

Author:

Mukherjee SagnickORCID,Fortney Jonathan J.ORCID,Jensen-Clem RebeccaORCID,Tan XianyuORCID,Marley Mark S.ORCID,Batalha Natasha E.ORCID

Abstract

Abstract The detection of disk-integrated polarization from Luhman 16 A and B in the H band, and subsequent modeling, has been interpreted in the framework of zonal cloud bands on these bodies. Recently, Tan and Showman investigated the 3D atmospheric circulation and cloud structures of brown dwarfs with general circulation models (GCMs), and their simulations yielded complex cloud distributions showing some aspects of zonal jets, but also complex vortices that cannot be captured by a simple model. Here we use these 3D GCMs specific to Luhman 16 A and B, along with the 3D Monte Carlo radiative transfer code ARTES, to calculate their polarization signals. We adopt the 3D temperature–pressure and cloud profiles from the GCMs as our input atmospheric structures. Our polarization calculations at 1.6 μm agree well with the measured degree of linear polarization from both Luhman 16 A and B. Our calculations reproduce the measured polarization for both objects with cloud particle sizes between 0.5 and 1 μm for Luhman 16 A and of 5 μm for Luhman 16 B. We find that the degree of linear polarization can vary on hour-long timescales over the course of a rotation period. We also show that models with azimuthally symmetric band-like cloud geometries, typically used for interpreting polarimetry observations of brown dwarfs, overpredict the polarization signal if the cloud patterns do not include complex vortices within these bands. This exploratory work shows that GCMs are promising for modeling and interpreting polarization signals of brown dwarfs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3