Abstract
Abstract
Observations of some starburst-driven galactic superwinds suggest that strong radiative cooling could play a key role in the nature of feedback and the formation of stars and molecular gas in star-forming galaxies. These catastrophically cooling superwinds are not adequately described by adiabatic fluid models, but they can be reproduced by incorporating nonequilibrium radiative cooling functions into the fluid model. In this work, we have employed the atomic and cooling module maihem implemented in the framework of the flash hydrodynamics code to simulate the formation of radiatively cooling superwinds as well as their corresponding nonequilibrium ionization (NEI) states for various outflow parameters, gas metallicities, and ambient densities. We employ the photoionization program cloudy to predict radiation- and density-bounded photoionization for these radiatively cooling superwinds, and we predict UV and optical line emission. Our nonequilibrium photoionization models built with the NEI states demonstrate the enhancement of C iv, especially in metal-rich, catastrophically cooling outflows, and O vi in metal-poor ones.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献