Emulating the interstellar medium chemistry with neural operators

Author:

Branca LorenzoORCID,Pallottini AndreaORCID

Abstract

Context. The study of galaxy formation and evolution critically depends on our understanding of the complex photo-chemical processes that govern the evolution and thermodynamics of the interstellar medium (ISM). In a computational sense, resolving the chemistry is among the weightiest tasks in cosmological and astrophysical simulations. Aims. Astrophysical simulations can include photo-chemical models that allow for a wide range of densities (n), abundances of different species (ni/n) and temperature (T), and plausible evolution scenarios of the ISM under the action of a radiation field (F) with different spectral shapes and intensities. The evolution of such a non-equilibrium photo-chemical network relies on implicit, precise, computationally costly, ordinary differential equations (ODE) solvers. Here, we aim to substitute such procedural solvers with fast, pre-trained emulators based on neural operators. Methods. We emulated a non-equilibrium chemical network up to H2 formation (9 species, 52 reactions) by adopting the DeepONet formalism, namely: by splitting the ODE solver operator that maps the initial conditions and time evolution into a tensor product of two neural networks (named branch and trunk). We used KROME to generate a training set, spanning −2 < log(n/cm−3) ≤ 3.5, log(20) ≤ log(T/K) ≤ 5.5, −6 ≤ log(ni/n) < 0, and adopting an incident radiation field, F, sampled in 10 energy bins with a continuity prior. We separately trained the solver for T and each ni for ≃4.34 GPUhrs. Results. Compared with the reference solutions obtained by KROME for single-zone models, the typical precision obtained is of the order of 10−2, that is, it is 10 times better when using a training that is 40 times less costly, with respect to previous emulators that only considered a fixed F. DeepONet also performs well for T and ni outside the range of the training sample. Furthermore, the emulator aptly reproduces the ion and temperature profiles of photo dissociation regions as well; namely, by giving errors that are comparable to the typical difference between various photo-ionization codes. The present model achieves a speed-up of a factor of 128× with respect to stiff ODE solvers. Conclusions. Our neural emulator represents a significant leap forward in the modelling of ISM chemistry, offering a good balance of precision, versatility, and computational efficiency. Nevertheless, further work is required to address the challenges represented by the extrapolation beyond the training time domain and the removal of potential outliers.

Publisher

EDP Sciences

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MACE: A Machine-learning Approach to Chemistry Emulation;The Astrophysical Journal;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3