Panchromatic Simulated Galaxy Observations from the NIHAO Project

Author:

Faucher NicholasORCID,Blanton Michael R.ORCID,Macciò Andrea V.ORCID

Abstract

Abstract We present simulated galaxy spectral energy distributions (SEDs) from the far-ultraviolet (FUV) through the far-infrared (FIR), created using hydrodynamic simulations and radiative transfer calculations, suitable for the validation of SED modeling techniques. SED modeling is an essential tool for inferring star formation histories from nearby galaxy observations, but it is fraught with difficulty due to our incomplete understanding of stellar populations, chemical enrichment processes, and the nonlinear, geometry-dependent effects of dust on our observations. Our simulated SEDs will allow us to assess the accuracy of these inferences against galaxies with known ground truth. To create the SEDs, we use simulated galaxies from the Numerical Investigation of Hundred Astrophysical Objects suite and the radiative transfer code Stellar Kinematics Including Radiative Transfer. We explore different subgrid post-processing recipes, using color distributions and their dependence on axis ratios of galaxies in the nearby Universe to tune and validate them. We find that subgrid post-processing recipes that mitigate limitations in the temporal and spatial resolution of the simulations are required for producing FUV to FIR photometry that statistically reproduce the colors of galaxies in the nearby Universe. With this paper, we release resolved photometry and spatially integrated spectra for our sample galaxies, each from a range of different viewing angles. Our simulations predict that there is a large variation in attenuation laws among galaxies, and that from any particular viewing angle that energy balance between dust attenuation and re-emission can be violated by up to a factor of 3. These features are likely to affect SED modeling accuracy.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3