AWSoM Magnetohydrodynamic Simulation of a Solar Active Region. II. Statistical Analysis of Alfvén Wave Dissipation and Reflection, Scaling Laws, and Energy Budget on Coronal Loops

Author:

Shi TongORCID,Manchester WardORCID,Landi EnricoORCID,van der Holst BartORCID,Szente JuditORCID,Chen YuxiORCID,Tóth GáborORCID,Bertello LucaORCID,Pevtsov AlexanderORCID

Abstract

Abstract The coronal heating problem has been a major challenge in solar physics, and a tremendous amount of effort has been made over the past several decades to solve it. In this paper, we aim at answering how the physical processes behind the Alfvén wave turbulent heating adopted in the Alfvén Wave Solar atmosphere Model (AWSoM) unfold in individual plasma loops in an active region (AR). We perform comprehensive investigations in a statistical manner on the wave dissipation and reflection, temperature distribution, heating scaling laws, and energy balance along the loops, providing in-depth insights into the energy allocation in the lower solar atmosphere. We demonstrate that our 3D global model with a physics-based phenomenological formulation for the Alfvén wave turbulent heating yields a heating rate exponentially decreasing from loop footpoints to top, which had been empirically assumed in the past literature. A detailed differential emission measure (DEM) analysis of the AR is also performed, and the simulation compares favorably with DEM curves obtained from Hinode/Extreme-ultraviolet Imaging Spectrometer observations. This is the first work to examine the detailed AR energetics of our AWSoM model with high numerical resolution and further demonstrates the capabilities of low-frequency Alfvén wave turbulent heating in producing realistic plasma properties and energetics in an AR.

Funder

NASA ∣ SMD ∣ Heliophysics Division

National Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3