Abstract
Abstract
To understand the origin of nuclear (≲100 pc) millimeter-wave (mm-wave) continuum emission in active galactic nuclei (AGNs), we systematically analyzed subarcsecond resolution Band-6 (211–275 GHz) Atacama Large Millimeter/submillimeter Array data of 98 nearby AGNs (z < 0.05) from the 70 month Swift/BAT catalog. The sample, almost unbiased for obscured systems, provides the largest number of AGNs to date with high mm-wave spatial resolution sampling (∼1–200 pc), and spans broad ranges of 14–150 keV luminosity {
40
<
log
[
L
14
−
150
/
(
erg
s
−
1
)
]
<
45
}, black hole mass
[
5
<
log
(
M
BH
/
M
⊙
)
<
10
], and Eddington ratio (
−
4
<
log
λ
Edd
<
2
). We find a significant correlation between 1.3 mm (230 GHz) and 14–150 keV luminosities. Its scatter is ≈0.36 dex, and the mm-wave emission may serve as a good proxy of the AGN luminosity, free of dust extinction up to N
H ∼ 1026 cm−2. While the mm-wave emission could be self-absorbed synchrotron radiation around the X-ray corona according to past works, we also discuss different possible origins of the mm-wave emission: AGN-related dust emission, outflow-driven shocks, and a small-scale (<200 pc) jet. The dust emission is unlikely to be dominant, as the mm-wave slope is generally flatter than expected. Also, due to no increase in the mm-wave luminosity with the Eddington ratio, a radiation-driven outflow model is possibly not the common mechanism. Furthermore, we find independence of the mm-wave luminosity on indicators of the inclination angle from the polar axis of the nuclear structure, which is inconsistent with a jet model whose luminosity depends only on the angle.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献