Deciphering Radio Emissions from Accretion Disk Winds in Radio-quiet Active Galactic Nuclei

Author:

Yamada Tomoya,Sakai Nobuyuki,Inoue YoshiyukiORCID,Michiyama TomonariORCID

Abstract

Abstract Unraveling the origins of radio emissions from radio-quiet active galactic nuclei (RQ AGNs) remains a pivotal challenge in astrophysics. One potential source of this radiation is the shock interaction between AGN disk winds and the interstellar medium (ISM). To understand this phenomenon, we construct a spherical, one-zone, and self-similar expansion model of shock structure between ultrafast outflows (UFOs) and the ISM. We then calculate the energy density distribution of nonthermal electrons by solving the transport equation, considering diffusive shock acceleration as the acceleration mechanism and synchrotron and inverse Compton cooling as the cooling mechanisms. Based on the derived energy distribution of nonthermal electrons, we model the radio synchrotron spectrum of the shocked ISM. For the 15 nearby RQ AGNs hosting UFOs, we investigate the shocked ISM parameters required to model their observed radio spectra based on X-ray observations and measured UFO velocities. Radio spectra of 11 out of 15 nearby RQ AGNs would be explained by the AGN disk wind model. This is a compelling indication that shock interactions between AGN disk winds and the ISM could indeed be the source of their radio emissions. The typical predicted source size and magnetic field strength are several 100 pc and 0.1 mG, respectively. We also discuss whether our prediction can be tested by future radio observations.

Funder

MEXT ∣ Japan Society for the Promotion of Science

NAOJ ALMA Scientific Research

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3