Discovery and Long-term Broadband X-Ray Monitoring of Galactic Black Hole Candidate MAXI J1803–298

Author:

Shidatsu MegumiORCID,Kobayashi Kohei,Negoro HitoshiORCID,Iwakiri WataruORCID,Nakahira SatoshiORCID,Ueda YoshihiroORCID,Mihara TatehiroORCID,Enoto TeruakiORCID,Gendreau KeithORCID,Arzoumanian Zaven,Pope John,Trout Bruce,Okajima TakashiORCID,Soong Yang

Abstract

Abstract We report the results from the broadband X-ray monitoring of the new Galactic black hole candidate MAXI J1803−298 with MAXI/GSC and Swift/BAT during its outburst. After the discovery on 2021 May 1, the soft X-ray flux below 10 keV rapidly increased for ∼10 days, then gradually decreased over five months. In the brightest phase, the source exhibited the state transition from the low/hard state to the high/soft state via the intermediate state. The broadband X-ray spectrum during the outburst is well described with a disk blackbody plus its thermal or nonthermal Comptonization. Before the transition, the source spectrum is described by a thermal Comptonization component with a photon index of ∼1.7 and an electron temperature of ∼30 keV, while a strong disk blackbody component is observed after the transition. The spectral properties in these periods are consistent with the low/hard state and the high/soft state, respectively. A sudden flux drop with a duration of a few days, unassociated with a significant change in the hardness ratio, was found in the intermediate state. A possible cause of this variation is that the mass accretion rate rapidly increased at the disk transition, which induced a strong Compton-thick outflow and scattered out the X-ray flux. Assuming a nonspinning black hole, we estimate the black hole mass of MAXI J1803−298 to be 5.8 ± 0.4 ( cos i / cos 70 ° ) 1 / 2 ( D / 8 kpc ) M (where i and D are the inclination angle and the distance, respectively) from the inner disk radius obtained in the high/soft state.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference54 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3