A dependable distance estimator to black hole low-mass X-ray binaries

Author:

Abdulghani Y1ORCID,Lohfink A M1,Chauhan J12ORCID

Affiliation:

1. Department of Physics, Montana State University , P.O. Box 173840, Bozeman, MT 59717 , USA

2. Inter-University Center for Astronomy and Astrophysics , Ganeshkhind, Pune 411007 , India

Abstract

ABSTRACT Black hole low-mass X-ray binaries (BH-LMXBs) are excellent observational laboratories for studying many open questions in accretion physics. However, determining the physical properties of BH-LMXBs necessitates knowing their distances. With the increased discovery rate of BH-LMXBs, many canonical methods cannot produce accurate distance estimates at the desired pace. In this study, we develop a versatile statistical framework to obtain robust distance estimates soon after discovery. Our framework builds on previous methods where the soft spectral state and the soft-to-hard spectral state transitions, typically present in an outbursting BH-LMXB, are used to place constraints on mass and distance. We further develop the traditional framework by incorporating general relativistic corrections, accounting for spectral/physical parameter uncertainties, and employing assumptions grounded in current theoretical and observational knowledge. We tested our framework by analysing a sample of 50 BH-LMXB sources using X-ray spectral data from the Swift/XRT, MAXI/GSC, and RXTE/PCA missions. By modelling their spectra, we applied our framework to 26 sources from the 50. Comparison of our estimated distances to previous distance estimates indicates that our findings are dependable and in agreement with the accurate estimates obtained through parallax and H i absorption methods. Investigating the accuracy of our constraints, we have found that estimates obtained using both the soft and transition spectral information have a median uncertainty (1σ) of 20 per cent, while estimates obtained using only the soft spectral state spectrum have a median uncertainty (1σ) of around 50 per cent. Furthermore, we have found no instrument-specific biases.

Funder

NASA

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3