Abstract
Abstract
We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode (g-mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental (f)- and pressure (p)-modes, are much larger than those of the g-mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献