Spectropolarimetry as a Means to Address Cloud Composition and Habitability for a Cloudy Exoplanetary Atmosphere in the Habitable Zone

Author:

West Robert A.ORCID,Dumont Philip,Hu RenyuORCID,Natraj VijayORCID,Breckinridge James,Chen Pin

Abstract

Abstract In our solar system, the densely cloud-covered atmosphere of Venus stands out as an example of how polarimetry can be used to gain information on cloud composition and particle mean radius. With current interest running high on discovering and characterizing extrasolar planets in the habitable zone where water exists in the liquid state, making use of spectropolarimetric measurements of directly imaged exoplanets could provide key information unobtainable through other means. In principle, spectropolarimetric measurements can determine if acidity causes water activities in the clouds to be too low for life. To this end, we show that a spectropolarimeter measurement over the range 400–1000 nm would need to resolve linear polarization to a precision of about 1% or better for reflected starlight from an optically thick cloud-enshrouded exoplanet. We assess the likelihood of achieving this goal by simulating measurements from a notional spectropolarimeter as part of a starshade configuration for a large space telescope (a HabEx design, but for a 6 m diameter primary mirror). Our simulations include consideration of noise from a variety of sources. We provide guidance on limits that would need to be levied on instrumental polarization to address the science issues we discuss. For photon-limited noise, integration times would need to be of order 1 hr for a large radius (10 Earth radii) planet to more than 100 hr for smaller exoplanets depending on the star–planet separation, planet radius, phase angle, and desired uncertainty. We discuss implications for surface chemistry and habitability.

Funder

NASA ∣ Jet Propulsion Laboratory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3