Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

Author:

Kasliwal Mansi M.ORCID,Anand ShreyaORCID,Ahumada TomásORCID,Stein RobertORCID,Carracedo Ana Sagués,Andreoni IgorORCID,Coughlin Michael W.ORCID,Singer Leo P.ORCID,Kool Erik C.ORCID,De Kishalay,Kumar Harsh,AlMualla Mouza,Yao YuhanORCID,Bulla MattiaORCID,Dobie DougalORCID,Reusch Simeon,Perley Daniel A.ORCID,Cenko S. BradleyORCID,Bhalerao VarunORCID,Kaplan David L.ORCID,Sollerman JesperORCID,Goobar ArielORCID,Copperwheat Christopher M.ORCID,Bellm Eric C.ORCID,Anupama G. C.ORCID,Corsi AlessandraORCID,Nissanke SamayaORCID,Agudo Iván,Bagdasaryan Ashot,Barway SudhanshuORCID,Belicki Justin,Bloom Joshua S.ORCID,Bolin Bryce,Buckley David A. H.,Burdge Kevin B.ORCID,Burruss Rick,Caballero-García Maria D.,Cannella Chris,Castro-Tirado Alberto J.,Cook David O.ORCID,Cooke JeffORCID,Cunningham VirginiaORCID,Dahiwale Aishwarya,Deshmukh Kunal,Dichiara Simone,Duev Dmitry A.ORCID,Dutta Anirban,Feeney Michael,Franckowiak AnnaORCID,Frederick SaraORCID,Fremling ChristofferORCID,Gal-Yam AvishayORCID,Gatkine PradipORCID,Ghosh ShaonORCID,Goldstein Daniel A.ORCID,Golkhou V. ZachORCID,Graham Matthew J.ORCID,Graham Melissa L.ORCID,Hankins Matthew J.ORCID,Helou GeorgeORCID,Hu YoudongORCID,Ip Wing-Huen,Jaodand AmrutaORCID,Karambelkar Viraj,Kong Albert K. H.ORCID,Kowalski Marek,Khandagale Maitreya,Kulkarni S. R.ORCID,Kumar BrajeshORCID,Laher Russ R.ORCID,Li K. L.,Mahabal AshishORCID,Masci Frank J.ORCID,Miller Adam A.ORCID,Mogotsi Moses,Mohite Siddharth,Mooley KunalORCID,Mroz Przemek,Newman Jeffrey A.ORCID,Ngeow Chow-ChoongORCID,Oates Samantha R.,Patil Atharva Sunil,Pandey Shashi B.,Pavana M.,Pian ElenaORCID,Riddle ReedORCID,Sánchez-Ramírez Rubén,Sharma Yashvi,Singh Avinash,Smith Roger,Soumagnac Maayane T.ORCID,Taggart Kirsty,Tan Hanjie,Tzanidakis AnastasiosORCID,Troja EleonoraORCID,Valeev Azamat F.,Walters Richard,Waratkar Gaurav,Webb SaraORCID,Yu Po-ChiehORCID,Zhang Bin-BinORCID,Zhou RongpuORCID,Zolkower Jeffry

Abstract

Abstract We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo’s third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg2, a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10−25 yr−1. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day−1 (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than −16.6 mag assuming flat evolution (fading by 1 mag day−1) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than −16.6 mag. Comparing to model grids, we find that some kilonovae must have M ej < 0.03 M , X lan > 10−4, or ϕ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3