Supernova Fallback as Origin of Neutron Star Spins and Spin-kick Alignment

Author:

Janka Hans-ThomasORCID,Wongwathanarat Annop,Kramer MichaelORCID

Abstract

Abstract Natal kicks and spins are characteristic properties of neutron stars (NSs) and black holes (BHs). Both offer valuable clues to dynamical processes during stellar core collapse and explosion. Moreover, they influence the evolution of stellar multiple systems and the gravitational-wave signals from their inspiral and merger. Observational evidence of a possibly generic spin-kick alignment has been interpreted as an indication that NS spins are either induced with the NS kicks or inherited from the progenitor rotation, which thus might play a dynamically important role during stellar collapse. Current three-dimensional supernova simulations suggest that NS kicks are transferred in the first seconds of the explosion, mainly by anisotropic mass ejection and, on a secondary level, anisotropic neutrino emission. By contrast, the NS spins are only determined minutes to hours later by the angular momentum associated with the fallback of matter that does not become gravitationally unbound in the supernova. Here, we propose a novel scenario to explain spin-kick alignment as a consequence of tangential vortex flows in the fallback matter that is accreted mostly from the direction of the NS’s motion. For this effect the initial NS kick is crucial, because it produces a growing offset of the NS away from the explosion center, thus promoting one-sided accretion. In this new scenario conclusions based on traditional concepts are reversed. For example, pre-kick NS spins are not required, and rapid progenitor core rotation can hamper spin-kick alignment. We also discuss implications for natal BH kicks and the possibility of tossing the BH’s spin axis during its formation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3