AT 2019avd: A Tidal Disruption Event with a Two-phase Evolution

Author:

Chen Jin-HongORCID,Dou Li-MingORCID,Shen Rong-FengORCID

Abstract

Abstract Tidal disruption events (TDEs) can uncover the quiescent supermassive black holes (SMBHs) at the center of galaxies and also offer a promising method to study them. After the disruption of a star by an SMBH, the highly elliptical orbit of the debris stream will be gradually circularized due to the self-crossing, and then the circularized debris will form an accretion disk. The recent TDE candidate AT 2019avd has double peaks in its optical light curve, and the X-ray emerges near the second peak. The durations of the peaks are ∼400 and 600 days, respectively, and the separation between them is ∼700 days. We fit its spectral energy distribution and analyze its light curves in the optical/UV, mid-infrared, and X-ray bands. We find that this source can be interpreted as a two-phase scenario in which the first phase is dominated by the stream circularization, and the second phase is the delayed accretion. We use the succession of the self-crossing model and delayed accretion model to fit the first and second peaks, respectively. The fitting result implies that AT 2019avd can be interpreted by the partial disruption of a 0.9 M star by a 7 × 106 M SMBH, but this result is sensitive to the stellar model. Furthermore, we find that the large-amplitude (by factors up to ∼5) X-ray variability in AT 2019avd can be interpreted as the rigid-body precession of the misaligned disk due to the Lense–Thirring effect of a spinning SMBH, with a precession period of 10−25 days.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Guangdong Major Project of Basic and Applied Basic Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3