Author:
Hao Y. W.,Niu Y. F.,Niu Z. M.
Abstract
Abstract
The effects of spontaneous fission on r-process nucleosynthesis are investigated in the hot wind r-process scenario. We perform network calculations using three sets of spontaneous fission rates to study how the abundance pattern is shaped when different sets of fissioning nuclei are encountered by the r-process nuclear flow. The relative contributions from spontaneous fission, neutron-induced fission, and β-delayed fission to the nucleosynthesis process are studied by calculating the corresponding fission flow. We show that the relative contributions of various fission channels in r-process nucleosynthesis depend on the astrophysical conditions and fission models used. By using the spontaneous fission rates from a modified Swiatecki’s formula with isospin and blocking effects, the spontaneous fission and neutron-induced fission play an equally important role in r-process nucleosynthesis under an extreme neutron-rich astrophysical scenario with Y
e
= 0.1. The fissioning nuclei are located in different regions of the nuclear chart when different spontaneous fission models are used. The fission fragment distributions of fissioning nuclei in different regions have apparent diversity, which affects the mass regions where fission products are deposited, leading to the difference of the final abundance around the second r-process peak and rare-earth subpeak.
Funder
MOST ∣ National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献