Nucleosynthesis and observation of the heaviest elements

Author:

Holmbeck E. M.ORCID,Sprouse T. M.ORCID,Mumpower M. R.ORCID

Abstract

AbstractThe rapid neutron capture or ‘r process’ of nucleosynthesis is believed to be responsible for the production of approximately half the natural abundance of heavy elements found on the periodic table above iron (with proton number $$Z=26$$ Z = 26 ) and all of the heavy elements above bismuth ($$Z=83$$ Z = 83 ). In the course of creating the actinides and potentially superheavies, the r process must necessarily synthesize superheavy nuclei (those with extreme proton numbers, neutron numbers or both) far from isotopes accessible in the laboratory. Many questions about this process remain unanswered, such as ‘where in nature may this process occur?’ and ‘what are the heaviest species created by this process?’ In this review, we survey at a high level the nuclear properties relevant for the heaviest elements thought to be created in the r process. We provide a synopsis of the production and destruction mechanisms of these heavy species, in particular the actinides and superheavies, and discuss these heavy elements in relation to the astrophysical r process. We review the observational evidence of actinides found in the Solar system and in metal-poor stars and comment on the prospective of observing heavy-element production in explosive astrophysical events. Finally, we discuss the possibility that future observations and laboratory experiments will provide new information in understanding the production of the heaviest elements.

Funder

Space Telescope Science Institute

National Nuclear Security Administration

NASA Hubble Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3