Binary Vision: The Mass Distribution of Merging Binary Black Holes via Iterative Density Estimation

Author:

Sadiq JamORCID,Dent ThomasORCID,Gieles MarkORCID

Abstract

Abstract Binary black hole (BBH) systems detected via gravitational-wave emission are a recently opened astrophysical frontier with many unknowns and uncertainties. Accurate reconstruction of the binary distribution with as few assumptions as possible is desirable for inference of formation channels and environments. Most population analyses have, though, assumed a power law in binary mass ratio q, and/or assumed a universal q distribution regardless of primary mass. Methods based on kernel density estimation allow us to dispense with such assumptions and directly estimate the joint binary mass distribution. We deploy a self-consistent iterative method to estimate this full BBH mass distribution, finding local maxima in primary mass consistent with previous investigations and a secondary mass distribution with a partly independent structure, inconsistent both with a power law and with a constant function of q. We find a weaker preference for near-equal-mass binaries than in most previous investigations; instead, the secondary mass has its own “spectral lines” at slightly lower values than the primary, and we observe an anticorrelation between primary and secondary masses around the ∼10 M peak.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3