The Role of Filamentary Structures in the Formation of Two Dense Cores, L1544 and L694-2

Author:

Kim ShinyoungORCID,Lee Chang WonORCID,Tafalla MarioORCID,Gophinathan Maheswar,Caselli PaolaORCID,Myers Philip C.ORCID,Chung Eun JungORCID,Li ShanghuoORCID

Abstract

Abstract We present mapping results of two prestellar cores, L1544 and L694-2, embedded in filamentary clouds in C18O (3–2), 13CO (3–2), 12CO (3–2), HCO+ (4–3), and H13CO+ (4–3) lines with the James Clerk Maxwell Telescope to examine the role of the filamentary structures in the formation of dense cores in the clouds, with new distance estimates for L1544 ( 175 3 + 4 pc) and L694-2 ( 203 7 + 6 pc). From these observations, we found that the nonthermal velocity dispersion of two prestellar cores and their surrounding clouds is smaller than or comparable to the sound speed. This may indicate that the turbulence has already been dissipated for both filaments and cores during their formation time. We also found a λ/4 shift between the periodic oscillations in the velocity and the column density distributions, implying the possible presence of gravitational core-forming flow motion along the axis of the filament. The mass accretion rates due to these flow motions are estimated to be 2–3 M Myr−1, being comparable to that for Serpens cloud but much smaller than those for the Hub filaments, cluster, or high-mass forming filaments by 1 or 2 orders of magnitude. From this study, we suggest that the filaments in our targets might be formed from the shock compression of colliding clouds, and then the cores are formed by gravitational fragmentation of the filaments to evolve to the prestellar stage. We conclude that the filamentary structures in the clouds play an important role in the entire process of formation of dense cores and their evolution.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic Fields of the Starless Core L 1512;The Astrophysical Journal;2024-01-01

2. Initial conditions of star formation at ≲2000 au: Physical structure and NH3 depletion of three early-stage cores;Astronomy & Astrophysics;2023-12

3. Line emission from filaments in molecular clouds;Monthly Notices of the Royal Astronomical Society;2023-04-26

4. Environmental effects of star-forming cores on mass accretion rate;Monthly Notices of the Royal Astronomical Society;2023-01-02

5. First detection of CHD2OH towards pre-stellar cores;Astronomy & Astrophysics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3