Magnetic Fields of the Starless Core L 1512

Author:

Lin Sheng-JunORCID,Lai Shih-PingORCID,Pattle KateORCID,Berry DavidORCID,Clemens Dan P.ORCID,Pagani LaurentORCID,Ward-Thompson DerekORCID,Thieme Travis J.ORCID,Ching Tao-ChungORCID

Abstract

Abstract We present JCMT POL-2 850 μm dust polarization observations and Mimir H-band stellar polarization observations toward the starless core L 1512. We detect the highly ordered core-scale magnetic field traced by the POL-2 data, of which the field orientation is consistent with the parsec-scale magnetic fields traced by Planck data, suggesting the large-scale fields thread from the low-density region to the dense core region in this cloud. The surrounding magnetic field traced by the Mimir data shows a wider variation in the field orientation, suggesting there could be a transition of magnetic field morphology at the envelope-scale. L 1512 was suggested to be presumably older than 1.4 Myr in a previous study via time-dependent chemical analysis, hinting that the magnetic field could be strong enough to slow the collapse of L 1512. In this study, we use the Davis–Chandrasekhar–Fermi method to derive a plane-of-sky magnetic field strength (B pos) of 18 ± 7 μG and an observed mass-to-flux ratio (λ obs) of 3.5 ± 2.4, suggesting that L 1512 is magnetically supercritical. However, the absence of significant infall motion and the presence of an oscillating envelope are inconsistent with the magnetically supercritical condition. Using a virial analysis, we suggest the presence of a hitherto hidden line-of-sight magnetic field strength of ∼27 μG with a mass-to-flux ratio (λ tot) of ∼1.6, in which case both magnetic and kinetic pressures are important in supporting the L 1512 core. On the other hand, L 1512 may have just reached supercriticality and will collapse at any time.

Funder

National Science and Technology Council, Taiwan (NSTC)

National Science and Technology Council, Taiwan

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3