Debye-scale Solitary Structures in the Martian Magnetosheath

Author:

Kakad BharatiORCID,Kakad AmarORCID,Aravindakshan HarikrishnanORCID,Kourakis IoannisORCID

Abstract

Abstract We present an analysis of 450 solitary wave pulses observed by the Langmuir Probe and Waves instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft during its five passes around Mars on 2015 February 9. The magnitude and duration of these pulses vary between 1 and 25 mV m−1 and 0.2–1.7 ms, respectively. The ambient plasma conditions suggest that these pulses are quasi-parallel to the ambient magnetic field and can be considered electrostatic. These pulses are dominantly seen in the dawn (5–6 LT) and afternoon-dusk (15–18 LT) sectors at an altitude of 1000–3500 km. The frequencies of these electric field pulses are close to the ion plasma frequency (i.e., f pif eff pe), which suggests that their formation is governed by ion dynamics. The computer simulation performed for the Martian magnetosheath plasma hints that these pulses are ion-acoustic solitary waves generated by drifted ion and electron populations and their spatial scales are in the range of few ion Debye lengths (1.65–10λ di). This is the first study to report and model solitary wave structures in the Martian magnetosheath.

Funder

Khalifa University of Science, Technology and Research

Abu Dhabi Department of Education and Knowledge

Khalifa University’s Space and Planetary Science Center, UAE

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3