Theory of ion holes in space and astrophysical plasmas

Author:

Aravindakshan Harikrishnan1ORCID,Yoon Peter H234,Kakad Amar1,Kakad Bharati1

Affiliation:

1. Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218, India

2. Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA

3. School of Space Research, Kyung Hee University, Yongin, South Korea

4. Korea Astronomy and Space Science Institute, Daejeon, South Korea

Abstract

ABSTRACT Coherent bipolar electric field structures, ubiquitously found in various space and astrophysical plasma environments, play an important role in plasma transport and particle acceleration. Most of the studies found in the literature about them pertain to bipolar structures with positive potentials interpreted in terms of electron holes. Magnetospheric Multiscale spacecraft have recently observed a series of coherent electric field structures with negative potential in the Earth’s bow shock region, which are interpreted as ion holes. The existing theoretical models of ion holes are inadequate because they entail stringent conditions on the ratio of ion to electron temperature. This letter presents a new theory that provides a satisfactory explanation to these observations. A salient point is that this letter incorporates the electron dynamics in the theoretical formalism, which removes ambiguities associated with existing theories, thus showing that the new theory for ion holes may be widely applicable for space and astrophysical plasmas.

Funder

NASA

NSF

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3